Superconvergence of Discontinuous Galerkin and Local Discontinuous Galerkin Schemes for Linear Hyperbolic and Convection-Diffusion Equations in One Space Dimension
نویسندگان
چکیده
In this paper, we study the superconvergence property for the discontinuous Galerkin (DG) and the local discontinuous Galerkin (LDG) methods, for solving one-dimensional time dependent linear conservation laws and convection-diffusion equations. We prove superconvergence towards a particular projection of the exact solution when the upwind flux is used for conservation laws and when the alternating flux is used for convection-diffusion equations. The order of superconvergence for both cases is proved to be k+ 3 2 when piecewise P k polynomials with k ≥ 1 are used. The proof is valid for arbitrary non-uniform regular meshes and for piecewise P k polynomials with arbitrary k ≥ 1, improving upon the results in [8, 9] in which the proof based on Fourier analysis was given only for uniform meshes with periodic boundary condition and piecewise P 1 polynomials.
منابع مشابه
Accuracy enhancement of discontinuous Galerkin methods for stiff source terms
Discontinuous Galerkin (DG) methods exhibit ”hidden accuracy” that makes the superconvergence of this method an increasing popular topic to address. Previous work has implemented a convolution kernel approach that allows us to improve the order of accuracy from k+1 to order 2k+m for time-dependent linear convection-diffusion equations, where k is the highest degree polynomial used in the approx...
متن کاملLocal Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives
In this paper we review the existing and develop new local discontinuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develo...
متن کاملSuperconvergence of Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives
In this paper we review the existing and develop new local discontinuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develo...
متن کاملNumerical Studies of Galerkin-type Time-discretizations Applied to Transient Convection-diffusion-reaction Equations
We deal with the numerical solution of time-dependent convection-diffusion-reaction equations. We combine the local projection stabilization method for the space discretization with two different time discretization schemes: the continuous Galerkin-Petrov (cGP) method and the discontinuous Galerkin (dG) method of polynomial of degree k. We establish the optimal error estimates and present numer...
متن کاملSuperconvergence of the local discontinuous Galerkin method for linear fourth-order time-dependent problems in one space dimension
In this paper we investigate the superconvergence of local discontinuous Galerkin (LDG) methods for solving one-dimensional linear time-dependent fourth-order problems. We prove that the error between the LDG solution and a particular projection of the exact solution, ēu , achieves ( k+ 2 ) th-order superconvergence when polynomials of degree k (k 1) are used. Numerical experiments with Pk poly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 47 شماره
صفحات -
تاریخ انتشار 2010